SEAW Spring Webinar

Engineering Requirements for Mass Timber Buildings

Wednesday, June 12, 2019

Presented by Structural Engineers Association of Washington

©2019 SEAW

All rights reserved. This book or any part thereof may not be reproduced in any form without the written permission of the Structural Engineers Association of Washington, 5727 Baker Way NW, Suite 200, Gig Harbor, WA 98332.

CREDITS

The materials used herein are based on the following as well as standards referenced by these documents:

• IBC 2015, "International Building Code", 2015

DISCLAIMER

While the information presented in this webinar and proceedings is believed to be correct, SEAW and the speakers assume no liability for its accuracy or for the opinions expressed herein. The materials presented in this webinar and proceedings should not be used or relied upon for any specific application without express examination and verification of its accuracy, suitability and applicability by qualified professionals. Users of information from this webinar and proceedings assume all liability arising from such use.

Included documents prepared by others are subject to change by the preparers. Users are cautioned to obtain the latest versions of all such documents prior to use on a specific project.

About the Presenters

Hans-Erik Blomgren, PE SE P.Eng. Struct.Eng. Director of Testing and Characterization, Katerra

At Katerra, Hans-Erik is director of mass timber product and building systems. He has managed certification for the company's cross-laminated timber product line which will be manufactured at a new 270,000 sq. ft factory in Spokane Valley, WA starting in the summer of 2019. As well, he has led Katerra's efforts to technically justify and test cross-laminated timber panel assemblies and systems for code compliant fire, structural, and acoustic use. Hans-Erik represents Katerra on the PRG 320 CLT Manufacturing Standard and AWC Wood Design Standards code writing committees.

Robert Gerard, PE Associate Fire Engineer, Katerra

Robert Gerard is a licensed Fire Protection Engineer based in Katerra's Seattle office. He holds a Bachelor's Degree in Architectural Engineering from Cal Poly, San Luis Obispo, and a Master's Degree in Fire Engineering from the University of Canterbury in New Zealand. Robert's experience in timber fire safety has seen him involved in timber building research and testing programs around the globe, including placements in London and Sydney in addition to his home base of Washington. His participation in a number of research forums, seminars, conferences and projects has made him an authority on fire safety in timber buildings.

Agenda

11:30-11:35	Introduction by the SEAW Education Committee
11:35-12:00	1- Mass Timber Background
12:00-12:20	2- Fundamentals of CLT and Glulam Behavior
12:20-12:40	3- Mass Timber Building Design Requirements
12:40-1:00	4- Best Practice for Building Design
1:00-1:20	5- Additional Requirements
1:20-1:30	Q & A
1:30	Adjourn

Reproduction not permitted without permission

IBC Consta	ruction Typ	pes			
Building cla	ssification b	ased on mat	terials (2018	IBC Chapte	er 6)
Element	Туре І	Type II	Type III	Type IV	Type V
Primary frame	Non- combustible	Non- combustible	Combustible	Combustible	Combustible
External walls	Non- combustible	Non- combustible	*Non- combustible	*Non- combustible	Combustible
Internal walls	Non- combustible	Non- combustible	Combustible	Combustible	Combustible
Floors	Non- combustible	Non- combustible	Combustible	Combustible	Combustible
Roofs	Non- combustible*	Non- combustible*	Combustible	Combustible	Combustible
* CLT permitted	with non-combu	stible protection			
37 June 12, 2019	Enginee	ring Requirements for M	Aass Timber Buildings		SA

IBC Construction Types

Type V (2015 IBC 602.5)

• Any material permitted by code

IBC Construc	ction '	Тур	es	2010 1		()			
	type a	llowa	ances (.	2018 1		apter 6)	N/ 11 -		Y D
Parameter	I-A	I-B	II-A	II-B	III-A	III-B	IV-HI	V-A	V-B
Allowable Height	UL	180	85	75	85	75	85	70	60
Allowable # Stories	UL	12	5	5	5	5	5	4	3
Allowable Area	UL	UL	72,000	48,000	72,000	48,000	61,500	36,000	21,000
FRR									
Primary Frame	3	2	1	0	1	0	HT	1	0
Ext Bearing Walls	3	2	1	0	2	2	2	1	0
Int Bearing Walls	3	2	1	0	1	0	HT	1	0
Floors	2	2	1	0	1	0	HT	1	0
Roof	1-1/2	1	1	0	1	0	HT	1	0
40 June 12, 2019	Е	ngineerir	ng Requireme	nts for Mass	Timber Build	ings			ŚA

Parameter	IV-A*	IV-B*	IV-C*	IV-H
Allowable Height	270	180	85	8
Allowable # Stories	18	12	9	ļ
Allowable Area	184,500	123,000	76,875	61,50
Exposed Area	0%	Up to 20/40%	100%	100%
Sprinkler Protection	NFPA 13	NFPA 13	NFPA 13	NFPA 1
FRR				
Primary Frame	3	2	2	H.
Ext Bearing Walls	3	2	2	
Int Bearing Walls	3	2	2	H.
Floors	2	2	2	H.
Roof	1-1/2	1	1	H
Concealed Spaces	Permitted	Permitted	Permitted	N

-			Table	1: Allowa	ble Des	ign Pro	perties	for Lun	nber Lan	nination	used in K	aterra CLT						
	KAFI			Majo	r Streng	th Dire	ction				Minor Str	ength Direc	tion					
			f _{b,0} (psi)	E (10 ⁶ psi)	f _{to} (psi)	f _{co} (psi)	f _{v,0} (psi)	$f_{s,0}(psi)$	f _{b,90} (psi)	E (10 ⁶ psi)	f _{t.so} (psi)	f _{ceo} (psi)	f _{v,90} (psi)	f _{s,90} (psi)				
			875	1.4	550	1150	135	45	500	1.2	250	650	135	45				
			Note: P	roperties a	e based o	on visual	grade SF	F-#1/#2, a	and #3 for	Major and	Minor Stren	gth Directions	, respectively.					
	Table 2: Al	lowable l	Design (Capacities	s for Kat	terra C	LT in th	e US										
	CLT	La	minati	on Thickn	iesses ir	n CLT Li	ayup (ir	n)			N	Major Streng	th Direction	1 I	1	Minor Stren	th Direction	1
	Thickness	_		_		_		_		_	F _b S _{eff,0}	$EI_{eff,0}$ (10 ⁶	GA _{eff,0}	V _{s,0}	F _b S _{eff,90}	$EI_{eff,90}$ (10 ⁶	GA _{eff,90}	V _{s,90}
	(in)	-	1	-	1	-	-	-	1	-	(lb-ft/ft)	lb-in ² /ft)	(10 ⁶ lb/ft)	(lb/ft)	(lb-ft/ft)	lb-in ² /ft)	(10 ⁶ lb/ft)	(lb/ft
	3.2	1.08	1.08	1.08							1254	46	0.36	1166	97	1.51	0.41	389
2-DIV	3.5	1.08	1.38	1.08							1464	59	0.37	1274	159	3.15	0.51	497
iy	3.8	1.38	1.08	1.38							1788	78	0.45	1382	97	1.51	0.42	389
	4.1	1.38	1.38	1.38							2049	96	0.46	1490	159	3.15	0.52	497
	5.4	1.08	1.08	1.08	1.08	1.08					2884	176	0.72	1551	844	39.4	0.81	112
-Plv	6.0	1.08	1.38	1.08	1.38	1.08					3351	227	0.74	1622	1203	66.5	1.02	135
,	6.3	1.38	1.08	1.38	1.08	1.38					4122	293	0.91	1900	985	50.2	0.84	120
	6.8	1.35	1.35	1.35	1.35	1.35					4512	344	0.90	1941	1318	77	1.02	1400
-Plv	7.6	1.08	1.08	1.08	1.08	1.08	1.08	1.08			5098	435	1.07	1959	1944	151	1.22	155
	9.7	1.38	1.38	1.38	1.38	1.38	1.38	1.38			8324	908	1.37	2503	3174	315	1.56	198
-Plv	11.2	1.38	1.08	1.38	1.08	1.38	1.08	1.38	1.08	1.38	11342	1437	1.82	2292	3992	486	1.69	1778
	12.4	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	12904	1810	1.83	2347	5619	782	2.08	215

SERVICE		Marca Mide	ly Accented and Toyoted	Revised Septer	mber 5, 2018			Page 4
. GENTIOL		NIOSE WILL	ty Accepted and Husted	Table 3. Allowa	able In-Plane	Shear Stress for Nor	dic X-Lam ^(a) (For Use i	in the U.S.)
-ES Evaluation R	eport		ESR-3631	CLT Layup	Layup ID	Thickness, t _p (in.)	Fund (nei)	Europ (nei)
		This report is subject to re	newal September 2017.		78.3s	3.1/8	155(b)	190(b)
ICC-08 070 1 (800) 423	6587 (562) 699-0543	A Subsidiary of the Inform	ational Code Council®		89-3s	3 1/2	155	190 ^(b)
1 (000) 423	-0001 (00L) 000-0040	re outoratory of the intern	alignal occo obtinor-		105-3s	4 1/8	155	190
					131-5s	5 1/8	185 ^(c)	215 ^(c)
					140-4s	5 1/2	145	190 ^(b)
					143-5s	5 5/8	185 ^(c)	215 ^(c)
					175-5s	6 7/8	185	215
3-REFERENCE DESIGN	VALUES FOR IN-PLANE SHE	AR OF THE STRUCTURLAM	CROSSLAM" CLT PANELS	E1	197-7s	7 3/4	155 ^(b)	215 ^(c)
GRADE	LAYUP	FACE LAMINATI	si)		213-71	8 3/8	185 ^(c)	215 ^(c)
	DESIGNATION	=2	⊥ ²		220-7s	8 5/8	185 ^(c)	215 ^(c)
	105V	130	195		244-7s	9 5/8	185 ^(c)	215 ^(c)
V2M1.1	175V	180	1951		244-71	9 5/8	185 ^(c)	215 ^(c)
	245V	1803	195'		267-91	10 1/2	155 ^(b)	215 ^(c)
	315V	180 ³	195 ¹		314-91	12 3/8	185 ^(c)	215 ^(c)
gewise S Structur Nordic	t near Strengt am	th Values A	ttained By:					

resistance rating (rrit).									
eriod of time a building ele ructural function 's defined by Table 601	ement	: is i	nte	nde	d to	per	forn	na	givo
FIRE-RESISTANCE RATING RE		601 IS FOR I	BUILDIN	IG ELEM	ENTS (H	IOURS)			
BUILDING ELEMENT	TY	PEI	TYI	PEII	TYP	PE III	TYPE IV	TY	PEV
Primary structural frame ^f (see Section 202)	A 3*	2ª	1	0	A 1	в 0	HT	1	0 B
Bearing walls Exterior ^{e f} Interior	3 3ª	2 2ª	1	0	2 1	2 0	2 1/HT	1	0
Nonbearing walls and partitions				Se	e Table (502			
Exterior		0	0	0	0	0	See Section 602.4.6	0	0
Nonbearing walls and partitions Interior ^d	0								
Nonbearing walls and partitions Interior ^d Floor construction and associated secondary members (see Section 202)	0	2	1	0	1	0	HT	1	0

Parameter	I-A	I-B	II-A	II-B	III-A	III-B	IV-HT	V-A	V-B
Allowable Height	UL	180	85	75	85	75	85	70	60
Allowable # Stories	UL	12	5	5	5	5	5	4	3
Allowable Area	UL	UL	72,000	48,000	72,000	48,000	61,500	36,000	21,000
FRR									
Primary Frame	3	2	1	0	1	0	HT	1	0
Ext Bearing Walls	3	2	1	0	2	2	2	1	0
Int Bearing Walls	3	2	1	0	1	0	HT	1	0
Floors	2	2	1	0	1	0	HT	1	0
Roof	1-1/2	1	1	0	1	0	HT	1	0

Mass Timber Fire	-Resistance R	atings (2021 IB	C Table 601)	
Parameter	IV-A*	IV-B*	IV-C*	IV-HT
Allowable Height	270	180	85	85
Allowable # Stories	18	12	9	5
Allowable Area	184,500	123,000	76,875	61,500
Exposed Area	0%	Up to 20/40%	100%	100%
Sprinkler Protection	NFPA 13	NFPA 13	NFPA 13	NFPA 13
FRR				
Primary Frame	3	2	2	HT
Ext Bearing Walls	3	2	2	2
Int Bearing Walls	3	2	2	HT
Floors	2	2	2	HT
Roof	1-1/2	1	1	HT
Concealed Spaces	Permitted	Permitted	Permitted	NP
78 June 12, 2019	Engineering Requireme	ents for Mass Timber Building	s	SA

iar ra	tes	ano	d a	dju	Istn	nen	t fa	icto	ors (N	IDS	/ TR-	10)		
-				C	LT								Glulam	
able 16	.2.1B	E W	ffec /ith β	tive S _n = 1	Chai L.5in	Dept ./hr.)	ths (for C	LT		Table 16.	2.1A	Char Depth a Depth (for βι	nd Effective Char = 1.5 in./hr.)
Required Fire Resistance			E lami	ffectiv	e Char (in. thickn	Depths) esses, h ₁	, a _{eff} _{im} (in.)				Require	d Fire	Char Depth,	Effective Char Depth,
(hr.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2		Resist (hr	ance .)	a _{char} (in.)	a _{eff} (in.)
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8		1-He	our	1.5	1.8
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6		1½-H 2-H	our	2.1 2.6	2.5 3.2
		Table	e 1.4.	2 All	owab	e Des	ign S	tress	to Avera	age Ult	imate Stre	ength A	djustment F	actors
-						I	-		1/k		с	Assu	med COV	к
	Bendir	ng Str	rength	ı		F	ь		2.1 ¹	1-1	.645 COV	. (0.16 ²	2.85
	Tensile	e Stre	ength			F	t		2.1 ¹	1-1	.645 COV	. (0.16 ²	2.85
:	Shear	Strer	ngth			F	v		2.1 ¹	1-1	.645 COV	, ().14 ²	2.75
	Compr	essio	on Str	engti	ı	F	c		1.9 ¹	1-1	.645 COV	c ().16 ²	2.58
	Bucklir	na St	renati	n		E	05		1.66 4	1-1	.645 COV	. ().11 ⁵	2.03

	stance rating summ	nary		
Test	Beam	Connector	Applied Load	FRR
1	8.75" x 18" (222mm x 457mm)	1 x Ricon S VS 290x80	3,9051bs (17.4kN)	1 hr
2	10.75" x 24" (273mm x 610mm)	Staggered double Ricon S VS 200x80	16,620lbs (73.9kN)	1.5hrs
3	10.75" x 24" (273mm x 610mm)	1 x Megant 430	16,620lbs (73.9kN)	1.5hrs
All cor	nectors passed and ach	ieved at least 1hr FRR.		Sw
			Source: Softwo	od Lumber I

CLT Walls		
CLT Walls		
	CLT Walls	

State of Oregon Building Codes Div Better Buildings for Oreg	vision No gon (R	o. 15-01 ross-Lami ef.: ORS 455	nated Tim .060)	Statewide nber Provis	Alter	nate Janu	Metl ary 2	hod 015	_	CHAndb	dbook
Table 12.2-1 Desig	ASCE 7 Section Where Respon	Response	tors for Seism	ic Force-Resi	Structural Systems Structural System Limitations Including Structural Height, h _a (ft) Limits ^c				a poor		
Seismic Force-Resisting System	Requirements Are Specified	Coefficient, R ^a	Overstrength Factor Q. ^g	Amplification Factor Ca ^b	B	eismic I	Design Ca	tegory E ^d	F		
/. Light-frame walls with shear panels of	14.1 and 14.5	2	2 1/2	2	NL	NL	35	NP	NP		
8. Light-frame (cold-formed steel) wall systems using flat stran bracing	14.1	4	2	3 1/2	NL	NL	65	65	65	1	
9. Cross-laminated timber shear walls ¹	14.1 and 14.5	2	<u>2 1/4</u>	2	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>	<u>NL</u>		

P	roject Requ	uirements	
	Project	Multifamily Project	TEL TO AN AVAILABLE
	Jurisdiction	Anywhere USA	
	Code	IBC 2018	
	Use	R-2	
	Stories	5 wood over concrete podium	
	Height	<85ft	
	Sprinklered	Yes	FURNING CLARKER / (
	Construction Type	VA (or IIIA)	Le Le V
Fi	re Resistive Rating	1hr	
10	5 June 12, 2019	Engineering Requirements for Mas	s Timber Buildings

109

SA

	ltem	Code Reference	Test/Standard
Structural	Manufacturing Standard	IBC 2303.1.4	APA PRG 320
	Design Values - Out of Plane	IBC 1706.1	APA Product Reports (ASTM ASTM D198 or D4761)
	Design Values - In-Plane Shear	IBC 1706.1	ICC AC 455 (ASTM D5456 Annex 3)
	Design Method - Out-of-Plane	NDS Chapter 10	-
	Design Method - In Plane	-	-
	Fasteners	NDS Chapter 12	ICC AC 233 (ASTM D1761)
	Fire	NDS Chapter 16	
	Vibration	-	CLT Handbook, etc.
	Special Inspection	IBC 1704.3	-
Fire	Fire Resistive Rating	IBC 703.2	ASTM E119
	Flame Spread	IBC 803.1.1	ASTM E84
	Firestops	IBC 714.4.1.2	ASTM E814
	Fire Joints	IBC 714.3	ASTM E1966
	Concealed Spaces	IBC 718	NFPA 13
	Special Inspection	IBC 1704.3	-
Acoustics	Airborne Sound Transmission	IBC 1207.1	ASTM E90
	Structure-borne Sound Transmission	IBC 1207.1	ASTM E492
Acoustics	Airborne Sound Transmission Structure-borne Sound Transmission	IBC 1207.1 IBC 1207.1	ASTM E90 ASTM E492

CLT Floor Plate – Summary of Code Requirements

119 June 12, 2019

Engineering Requirements for Mass Timber Buildings

